

Conceptual Guide to Torpedo System Design and Development

RVS Subrahmanyam Y Sreenivas Rao

Defence Research & Development Organisation Ministry of Defence, New Delhi - 110 011

Conceptual Guide to Torpedo System Design and Development

Conceptual Guide to Torpedo System Design and Development

Dr RVS Subrahmanyam

Scientist 'G' (Retd.) Naval Science & Technological Laboratory, Visakhapatnam and

Dr Y Sreenivas Rao

Distinguished Scientist (Retd.) and former Director General Naval Systems & Materials, DRDO

Defence Research and Development Organisation Ministry of Defence, New Delhi – 110 011 2024

DRDO MONOGRAPHS/SPECIAL PUBLICATIONS SERIES

CONCEPTUAL GUIDE TO TORPEDO SYSTEM DESIGN AND DEVELOPMENT

RVS Subrahmanyam, Y Sreenivas Rao

Series Editors

Editor-in-Chief	Editor	Sub Editor
Dr K Nageswara Rao	Alka Bansal	Ajay Kumar

Assistant Editor Editorial Assistant Rajesh Kumar Gunjan Bakshi

Cataloguing-in-Publication

Subrahmanyam, RVS and Rao, Y Sreenivas

Conceptual Guide to Torpedo System Design and Development

DRDO Monographs/Special Publications Series

1. Naval Warfare 2. Weapon System 3. Torpedo System

4. Design & Development 5. Naval Engineering

I. Title II. Series

623.946:62

© 2024, Defence Research & Development Organisation, New Delhi – 110 011.

ISBN 978-93-94166-87-5

All rights reserved. Except as permitted under the Indian Copyright Act 1957, no part of this publication may be reproduced, distributed or transmitted, stored in a database or a retrieval system, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

The views expressed in the book are those of the author(s) only. The Editors or the Publisher do not assume responsibility for the statements/opinions expressed by the author.

Cover DesignPrintingMarketingRajesh KumarRajesh Kumar SinghDipti Arora

Published by Director, DESIDOC, Metcalfe House, Delhi – 110 054.

Dedicated To Our Beloved Families

Contents

Fore	eword	xvii
Pref	âce	xix
Ack	nowledgements	xxi
List	of Acronyms	xxiii
CH.	APTER 1: INTRODUCTION	
1.1	Coastal Economic Zones and Strategic Resources	1
1.2	Coastal Protection and Security Measures	2
1.3	Infrastructure Development and Integrated Coastal Zone Management	2
1.4	Hydrographic Surveys and Nautical Charting	2
1.5	Naval Organisation and Advanced Technologies	3
CH.	APTER 2: UNDERSTANDING SEA - INPURSUIT OF	5
	NAVAL WARFARE	
2.1	Propagation of Electromagnetic Waves	6
2.2	Acoustic Propagation	7
2.3	Designing Torpedoes for Effective Operation in the Marine Environment	18
2.4	Mastering the Sea Complexity	20
CH.	APTER 3: HYDRODYNAMIC DESIGN	23
3.1	Analytical Methods Used in Hydrodynamic Evaluation	24
3.2	Numerical Methods Used in Hydrodynamic Evaluation	29
3.3	Experimental Methods for Hydrodynamic Evaluation	30
3.4	Model Scaling and Dimensional Analysis	36
3.5	Experimental Evaluation in Towing Tanks	39
3.6	Instrumentation	48
3.7	Powering Performance Evaluation of Torpedo	51

CHA	APTER 4: ELECTRIC PROPULSION SYSTEMS (MOTORS)	69
4.1	Introduction	69
4.2	Key Considerations and Advanced Technologies	70
4.3	Classification of Electrical Propulsion Motors	71
4.4	Comprehensive Design Framework for Electrical Motors	84
4.5	Cad Modelling of Machines	86
4.6	Motors Prototyping and Charactersiation	89
4.7	Design of Power Electronic Devices (PEDs)	91
4.8	Final Product Fabrication and Qualification	96
4.9	Conduct of Analysis to Extract Back EMF and Torque Constants	97
4.10	Analysis of Torque Characteristics, Demagnetisation Effects, Losses, and Power Factor in Motor Operation	100
4.11	Electrical Motors for Torpedoes	102
4.12	Single Shaft and Contra Rotating Shaft Design	106
4.13	Drive Technology for the Torpedo Motors	107
4.14	Controllers for Motors	110
CHA	APTER 5: PROPULSION SHAFT OF TORPEDO	115
5.1	Key Design Factors for Torpedo Propulsion Shafts	115
5.2	Structured Approach to Propulsion Shaft Design	116
5.3	Design	117
5.4	Rotor Dynamic Analysis	121
5.5	Design of Taper Fit for Propeller Shaft and Propeller Assembly	127
5.6	Bearing and Support Design	128
5.7	Shaft Sealing Mechanisms	130
5.8	Motor and Propulsion Shaft Assembly	131
5.9	Manufacturing Methodology of Propulsion Shaft	132
5.10	Motor-Propulsion Shaft-Propeller Assembly	135
CHA	APTER 6: PROPELLER DESIGN	137
6.1	Introduction	137
6.2	Design Inputs – Owner Requirements	138
6.3	Design Inputs – Hull Model Tests/CFD	139
6.4	Integrating Design Inputs	141

6.5	Types of Propellers for Torpedoes	149
6.6	Manufacturing of Propeller	155
CHA	APTER 7: BATTERY TECHNOLOGY	159
7.1	Evaluation of Battery from Hydrodynamic Design and Testing of Torpedoes	159
7.2	Battery Power Budget	161
7.3	Battery Related Terminology	162
7.4	Design of Battery Systems for Torpedoes	164
7.5	Design of Reserve Primary/Combat Battery	166
7.6	Primary/Non-Rechargeable Batteries (Auxiliary Power Source)	180
7.7	Design of Secondary Battery	184
7.8	Configuration of Battery	193
7.9	Design of Batteries to Meet Required Voltage, Current and Capacity	194
7.10	Change Over System for Low Speed and High Speed (of Torpedo) Demands	196
7.11	Ruggedised Containerisation for Withstanding ETS	197
7.12	C-Rate Study of Secondary Battery	199
7.13	Cycle Life Study of Secondary Battery	201
7.14	Operation, Maintenance and Storage Criteria of Batteries	202
7.15	Storage and Shelf Life of Batteries	203
CHA	APTER 8: DESIGN OF MECHANICAL SHELLS	203
8.1	Design Philosophy	205
8.2	Theory of Elasticity	206
8.3	Materials Used for Shells	207
8.4	Design Analysis of Shells	208
8.5	Design Process	209
8.6	FEM Analysis (Static Strength and Buckling Analysis)	218
CHA	APTER 9: ACTUATION SYSTEM	227
9.1	Introduction	227
9.2	Design Inputs for Actuation System	227
9.3	Classification of Actuators	228
9.4	Power Sources for Actuator Systems	230

9.5	Electrical Actuators	231
9.6	Key Hardware Components of an Actuator Controller	232
9.7	Feed Back in Actuators	234
9.8	Function of Potentiometers and Resolvers in Feedback Systems	236
9.9	Mechanical Components in a Actuation System	239
9.10	Communication Protocols for Torpedo Actuation Systems	242
9.11	Tools Used for Analysing and Designing Actuation System	243
9.12	Designing of Actuators	245
9.13	Tuning of Actuator System for Performance	247
9.14	Efficiency of Actuation System	249
	Load Tests on Actuators and Required Laboratory Setup	249
9.16	Conclusion	253
CHA	APTER 10: CONTROL LAW FOR TORPEDOES	255
10.1	Introduction	255
10.2	Extraction of Linear and Nonlinear Coefficients from Towing Tank Tests	255
10.3	Plant Transfer Functions Derivation	256
10.4	Stability Analysis	257
10.5	Tuning and Refining the Control System – Offline Process	258
10.6	Implementation of Control Logic	259
10.7	Verification and Validation of Control System Module Through HILS	260
10.8	Conclusion	262
CHA	APTER 11: INERTIAL NAVIGATION SYSTEM (INS)	263
11.1	Introduction	263
11.2	Types of Inertial Navigation Systems	264
11.3	Attributes of Different Gyroscopic Systems	277
11.4	Future Trends and Developments	277
11.5	Conclusion	280
CHA	APTER 12: HOMING	281
12.1	Types of Homing Systems	282
12.2	Key Components and Functions	287
12.3	Sensors (Hydrophone and Transducer)	287

12.4	Calibration of Element	291
12.5	Array Design	293
12.6	Signal Processing	294
12.7	Output to Guidance System	297
12.8	Design Constraints	297
12.9	Summary	298
CHA	APTER 13: TORPEDO - GUIDANCE	299
13.1	Introduction	299
13.2	Pursuit Guidance	299
13.3	Proportional Navigation (PN)	301
CHA	APTER 14: WIRE GUIDANCE	307
14.1	Role of Wire Guidance	307
14.2	FOC for Control And Guidance	308
14.3	Arrangement of FOC (Spool A and Spool B) in Torpedoes and Platforms	311
14.4	Comparative Study for Different Diametres of FOC Cable	313
14.5	Winding	315
14.6	Safety and Abort Options For FOC	318
CHA	APTER 15: WARHEAD	321
15.1	Introduction	321
15.2	Preliminary Design Inputs	321
15.3	Types of Warheads	324
15.4	Development of Warhead	327
15.5	Safety Aspects and Establishment of Insensitive Munitions (IM) Equivalence	330
15.6	Evaluation of Warhead	333
15.7	Qualification of Warheads	334
15.8	Insensitive Munitions (IM) Tests	335
15.9	Conclusion	339
CHA	APTER 16: ONBOARD COMPUTER (OBC)	341
16.1	Design Approach	341
16.2	Features	342

16.3	Generations of Processors	343
16.4	Design Inputs for Finalising the OBC	344
16.5	Distributive Architecture in OBC	347
16.6	Integrated Architecture in OBC	350
16.7	Testing of OBC	354
16.8	OBC Evaluation using Simulink	356
16.9	Qualification Standards for Software	358
CHA	PTER 17: INSTRUMENTATION	361
17.1	Key Factors for Selection of Instruments	362
17.2	Classification of Instruments Based on Signals	363
17.3	Torpedo Instrumentation	366
17.4	Instrumentation and Recording System (IRS)	370
17.5	Communication Protocol Between IRS	373
СНА	PTER 18: SEALING SYSTEMS OF TORPEDO	377
18.1	Static O-Rings	377
18.2	Quad Ring	385
18.3	Dynamic Shaft Sealing System	388
CHAPTER 19: LOCATING AND TRACING SYSTEMS OF TORPEDO		395
19.1	Mechanical Noise Maker	395
19.2	Pinger	396
19.3	Dye Markers	397
19.4	Smoke Markers	398
19.5	GPS/IRNSS	400
CHA	PTER 20: RECOVERY SYSTEMS OF TORPEDO	401
20.1	Introduction	401
20.2	Types of Recovery Mechanisms	401
20.3	Description of Recovery Mechanisms	402
СНА	PTER 21: AERIAL DELIVERY OF TORPEDOES	409
	Maritime Surveillance And Reconnaissance Techniques - Enemy Detection	409
21.2	Swift Tactics for Neutralising Remote Threats	411

21.3	Air Launch Adaptation Gear for Torpedoes	413
21.4	Pre-Requisite Studies for Deployment of Torpedoes from	416
	Helicopters and Aircrafts	
21.5	Flight Envelope	423
21.6	Torpedo Deployment Techniques	424
21.7	Torpedo Delivery from Helicopters: Hovering and Forward Flight	431
CHA	APTER 22: ROUTE TO CERTIFICATION	435
22.1	Introduction	435
22.2	Subsystems	437
22.3	Hardware Qualification	442
22.4	Ground Vibration Testing (GVT)	444
22.5	Software Qualification	446
22.6	Stages of Involvement and Reviews	450
22.7	Timelines	454
22.8	Aircraft Integration/Modifications	458
22.9	Obtaining the Flight Clearance Certificate (FCC)	461
22.10	Ground Integration Activities	465
22.11	Flight Trial Activities	468
CHA	APTER 23: TORPEDO OPERATIONAL READINESS	473
23.1	Mission Sequence	473
23.2	Torpedo Integration	476
CHA	APTER 24: TORPEDO LAUNCHERS	495
24.1	Classification of Torpedo Launchers Based on Size, Diametre and Weight	496
24.2	Classification of Launchers Based on Firing Mechanisms	498
24.3	Primary Components of a Torpedo Launcher	499
24.4	Launchers - Comparison	500
24.5	Blank Firing of Torpedo from Launchers	502
CHA	APTER 25: WEAPON FIRE CONTROL SYSTEM	50 5
25.1	Introduction	505
25.2	Global Scenario of Submarines	506
25.3	Weapon Fire Control Systems (WFCS)	506

25.4	Support Functions of WFCS	516
25.5	Check Out System	520
CHA	APTER 26: TARGETS FOR TORPEDOES	525
26.1	Introduction	525
26.2	Simulated Acoustic Targets (SAT)	526
26.3	Mobile Targets: An Essential Component in Testing and Training	533
26.4	Targets for Combat Torpedoes	537
CHA	APTER 27: ENVIRONMENTAL TESTING	541
27.1	Introduction	541
27.2	Overview of Environmental Testing	541
27.3	Types of Environmental Tests	543
27.4	Future Trends in Environmental Testing	556
27.5	Conclusion	558
CHAPTER 28: DESIGNING OF VERY LIGHT WEIGHT TORPEDO 559		
28.1	Technological Advancements - Variants	559
28.2	Other Relevant Key Parameters	562
28.3	System Engineering Studies	563
28.4	Developments and Challenges	563
28.5	Design Methodology	564
28.6	Proving Trials	565
CHA	APTER 29: CONCEPT OF OPERATIONS (CONOPS)	567
	FOR TORPEDO SYSTEMS	
29.1	Mission Objectives	567
29.2	Pre-Launch Preparation	567
29.3	Launch and Deployment	568
29.4	Navigation and Control	568
29.5	Target Detection and Homing	568
29.6	Engagement and Impact	568
29.7	Post-Engagement and Recovery	569
29.8	Data Recording and Analysis	569

29.9	Maintenance and Upgrades	569
29.10	Operational Readiness	569
CHA	APTER 30: LIFE CYCLE OF TORPEDO	571
30.1	Design and Development	571
30.2	Interface Control Documents (ICDs)	571
30.3	Production and Manufacturing	572
30.4	Deployment and Operation	573
30.5	Torpedo Maintenance	573
30.6	Shelf-Life Management	574
30.7	Upgrades	574
30.8	Retirement and Disposal	574
30.9	Post-Deployment Analysis	574
CHA	APTER 31: TECHNOLOGY TRENDS	575
31.1	Cutting-Edge Developments in Torpedo Systems	575
31.2	Modular Systems and Rapid Attack Weapons: Enhancing Submarine Threat Response	578
31.3	Thermal Propulsion Systems for Torpedoes	581
31.4	Artificial Intelligence (AI) Integration: Enhancing Torpedo Capabilities	585
31.5	Cloud-Based Systems: Enhancing Torpedo Guidance and Control	588
31.6	Supercavitating Torpedoes: High-Speed Underwater Weaponry	591
31.7	Unmanned Underwater Vehicles (UUVs): Transforming Underwater Operations	593
REF	ERENCES	597
IND	EX	605

डॉ. समिर वी. कामत Dr. Samir V. Kamat

सचिव, रक्षा अनुसंघान तथा विकास विभाग अध्यक्ष, डीआरडीओ Secretary, Department of Defence R&D Chairman, DRDO

FOREWORD

In the ever-evolving landscape of naval engineering, particularly within the specialized domain of underwater systems, the need for a reliable and comprehensive resource has never been more critical. The Conceptual Guide to Torpedo System Design and Development stands out as a crucial work, providing a meticulously organized roadmap through the intricate processes of torpedo design, development, and deployment. More than just a collection of technical information, it is a thoughtfully structured resource that serves as both an educational foundation for newcomers and a practical reference for seasoned professionals.

The authors' profound understanding of the subject, coupled with their extensive hands-on experience, shines through in every chapter. Each section is crafted with care to ensure that even the most advanced topics are presented with clarity, making the content accessible to a wide audience. The guide's ability to seamlessly bridge the gap between theoretical concepts and practical applications underscores its value as an indispensable resource for anyone involved in torpedo design and development.

As The Conceptual Guide to Torpedo System Design and Development positions itself to become a cornerstone in the field of underwater weaponry, its comprehensive coverage of essential topics, paired with a strong focus on practical application, solidifies its status as a must-read in this specialized area. I am pleased to see such a significant guide come to fruition and recognize the dedication and expertise that the authors have poured into this work. This text is set to be an invaluable tool for readers and all stakeholders associated with weapon systems, and I commend the authors for their outstanding contribution to the field of naval engineering.

In particular, I must express appreciation for DESIDOC, whose unwavering support and encouragement drive authors to produce such valuable monographs. Their dedication to advancing knowledge through research, collaboration, and resource development ensures that future generations of engineers, researchers, scientists, and defence personnel are equipped with the tools and insights necessary to excel in their respective fields.

Stamat

(Dr. Samir V. Kamat)

Preface

The rapid evolution of maritime warfare technology necessitates constant innovation and enhancement of underwater weaponry. This book, titled Conceptual Guide to Torpedo System Design and Development, has been crafted to provide a comprehensive overview of the standard procedures and systematic work flows essential for designing and developing state-of-the-art torpedoes. The primary objective of this guide is to bridge the gap between technical data and practical application, aligning the content with the structured processes followed during torpedo design and development.

This guide serves as a valuable resource that connects theoretical knowledge with real-world practices, offering readers a broad repository of technical information essential for contributing to the field of torpedo technology. The intended audience for this guide is diverse, including students, engineers, defence personnel, researchers, and scientists. Regardless of their specific disciplines, readers may find value in the cross-field concepts that this book presents, providing a broad understanding that enhances their ability to contribute to this specialised field.

The content of this book spans a wide range of topics central to torpedo design and development. It begins with the configuration of the torpedo, based on hydrodynamic design, necessary to achieve the optimal shape and size of the torpedo. The guide then progresses through critical areas such as sensor design, power requirements, stability, and control. Key sections explore the torpedo's capacity to withstand various operational and environmental conditions, focusing on mechanical shell design, material selection, and the integration of miniaturised subsystems. Additionally, the book delves into onboard computing systems, monitoring and safety systems, and comprehensive design considerations for both exercise and warshot iterations. The aerial deployment of torpedoes from helicopters and

fixed-wing aircraft is also covered, including the certification procedures that ensure the safety of both the platform and the weapon. Furthermore, related systems crucial for deployment, such as launchers, fire control computers, and testing protocols, are thoroughly examined.

Torpedo technology plays a pivotal role in modern naval warfare, where maintaining maritime dominance and security is of utmost importance. Advancements in torpedo design and technology have significantly influenced military strategies and underwater operations, making this a critical area of study and development. By following a well-defined workflow, this guide ensures that each aspect of torpedo design is meticulously addressed, providing valuable insight for designers, operating teams, and manufacturers.

The motivation behind writing this book stems from the authors' intention to provide comprehensive knowledge to a varied cross-section of readers engaged in the design and development of torpedoes. The authors' experience and expertise, coupled with a passion for naval engineering, have driven the creation of a structured, practical resource that aligns technical knowledge with real-world applications.

This work owes much to the contributions of colleagues who shared their expertise on specific workflows within their respective fields. We are deeply thankful to the researchers and officers who offered essential input and feedback during the development of this guide. We also extend our profound thanks to the Director, NSTL, and the entire fraternity for their unwavering support throughout this endeavour.

The book is structured to reflect the natural progression of the torpedo development process, beginning with conceptual design and culminating in final validation. Each chapter builds on the previous one, ensuring a logical flow that facilitates understanding and keeps readers engaged. The intent is to provide a cohesive narrative that not only educates but also captivates the reader, leading to a thorough grasp of the torpedo development process.

This guide is expected to be an invaluable resource, equipping readers with the knowledge and techniques necessary to advance their work and make significant contributions to the field of underwater weaponry.

Acknowledgements

With decades of combined experience in the design, development, and testing of advanced defence technologies and systems, we have been fortunate to accumulate a deep reservoir of knowledge. Reflecting on this journey, we were inspired to transform our practical understanding into this book, with the hope of offering clear and valuable insights into the intricacies of torpedo systems. It has been our collective motivation to share this knowledge, ensuring its relevance for current and future generations of engineers, researchers, and defence professionals.

This book is the culmination of dedicated efforts and the invaluable contributions of many passionate colleagues. Shaped by a structured workflow process, it has been meticulously crafted to reflect both expertise and practicality, serving as a practical and comprehensive resource for our readers. We are deeply grateful for the collective wisdom and constructive feedback shared throughout this journey, which have significantly enriched the content and nurtured a spirit of teamwork and learning. Our heartfelt appreciation goes to Dr Abraham Varughese, Director, NSTL and his team for their unwavering support, insightful discussions, and expertise. We hope the knowledge presented here serves as a comprehensive guide and contributes to the advancement of underwater systems and related technologies.

Additionally, we extend our heartfelt gratitude to the team of office of DG(NS&M) for their invaluable support.

We sincerely acknowledge the invaluable support of Dr K Nageswara Rao, Director, DESIDOC, Ms Alka Bansal and the editorial team for their technical expertise and dedication, which greatly contributed to the preparation of this monograph.

We sincerely thank Dr Samir V Kamat, Chairman, DRDO and Secretary, DDR&D for the exceptional motivation and unwavering encouragement, which has been a source of inspiration throughout the creation of this document. The guidance and support provided have been instrumental in bringing this work to fruition.

Finally, we extend our heartfelt gratitude to our spouses, Smt R Visala Subrahmanyam and Smt Y Lakshmi Sreenivas Rao, for their unwavering patience, understanding, and support throughout the many months of our dedication to crafting this monograph. Their encouragement has been our pillar of strength.

Visakhapatnam

Dr RVS Subrahmanyam Dr Y Sreenivas Rao

List of Acronyms

ADC Analog-to-Digital Converter

AHRS Attitude and Heading Reference Systems

AI Artificial Intelligence AR Augmented Reality

AUVs Autonomous Underwater Vehicles

BAR Blade Area Ratio

BEM Boundary Element Methods

BLDC Brushless DC

BMS Battery Management Systems

BW Bandwidth

CAD Computer-Aided Design

CATH Combined Altitude Temperature and Humidity

CCO Ceiling Cut Off

CFD Computational Fluid Dynamics
CFRP Carbon Fiber Reinforced Polymer
CMM Coordinate Measuring Machines
CNC Computer Numerical Control

CNT Carbon Nanotube

CONOPS Concept of Operations
CPU Central Processing Unit

CRAW Compact Rapid Attack Weapon

CRC Cyclic Redundancy Check
DAC Digital-to-Analog Converter

DCO Depth Cut Off

DEMAG Demagnetisation

DoD Depth of Discharge

DSP Digital Signal Processing
DSPs Digital Signal Processors
DTC Direct Torque Control

EEZs Exclusive Economic Zones

EM Electromagnetic

EMC Electromagnetic Compatibility

EMF Electromotive Force

EMI Electromagnetic Interference
EMRU Electro-Mechanical Release Unit

ESD Electrostatic Discharge ETs **Environmental Tests** FCS Fire Control System FEA Finite Element Analysis FEM Finite Element Method FIAM Flight in Air Materials FOC Field-Oriented Control FOG Fiber Optic Gyroscopes

FoS Factor of Safety

GCPs Ground Control Points

GFRP Glass Fiber Reinforced Polymer

GM Gain Margin

GPS Global Positioning System
GPU Graphics Processing Units

HB High Bandwidth HB Array Halbach Array

HILS Hardware-in-the-Loop Simulation

HMI Human-Machine Interface

HRG Hemispherical Resonating Gyroscopes

HWT Heavyweight Torpedo

ICDs Interface Control Documents

ICZM Integrated Coastal Zone Management IGBTs Insulated Gate Bipolar Transistors

IM Insensitive Munitions

INS Inertial Navigation System IPM Interior Permanent Magnet

IRS Instrumentation and Recording System

ISD Initial Straight Depth ISR Initial Straight Run ITA Initial Turn Angle

LCB Longitudinal Centre of Buoyancy
LCG Longitudinal Centre of Gravity
LDV Laser Doppler Velocimetry
LWT Lightweight Torpedoes
MASD Multi-Static Active Sonar

MEMS Microelectromechanical Systems

ML Machine Learning

MPA Maritime Patrol Aircraft

MTBF Mean Time Between Failures

MTTR Mean Time to Repair

NATO North Atlantic Treaty Organisation

NDT Non-Destructive Testing
OBC Onboard Computer
PCMs Phase Change Materials

PDMT Programmable Deep Mobile Target

PEDs Power Electronic Devices

PEMFCs Proton Exchange Membrane Fuel Cells

PID Proportional-Integral-Derivative

PIV Particle Image Velocimetry

PJP Pump Jet Propellers

PM Phase Margin

PMSMs Permanent Magnet Synchronous Motors

PN Proportional Navigation

PPUs Peripheral Processing Units PRI Pulse Repetition Interval

PSU Power Supply Unit

Pulse Width Modulation PWM Rare Earth Elements

REEs RLG Ring Laser Gyroscopes

ROVs Remotely Operated Vehicles

Resistance Temperature Detectors RTDs

RTOS Real-time operating system SAR Synthetic Aperture Radar SEMA **Switched Reluctance Motors**

SIL Software-In-the-Loop

SL Source Level

Submarine-Launched Ballistic Missiles SLBMs

SNR Signal-to-Noise Ratio

SOA Service-Oriented Architecture

SOC State of Charge SoC System on Chip SoH State of Health SoM System on Module SSD Solid-State Drive Transmit Receiver TR

TRM Torpedo Release Mechanism TVR Transmitting Voltage Response USVs **Unmanned Surface Vessels**

Unmanned Underwater Vehicles UUVs

UV Ultraviolet

VCB Vertical Centre of Buoyancy VCG Vertical Centre of Gravity VLM Vortex Lattice Methods Very Lightweight Torpedoes VIWT

VR Virtual Reality

WFCS Weapon Fire Control Systems

CHAPTER 1

Introduction

Coastlines around the world extend for thousands of kilometres, encompassing diverse and strategically vital geographical features such as sandy beaches, rocky shores, river deltas, estuaries, and coral reefs. These coastal regions are crucial for economic activities like fishing, tourism, and trade, and they hold significant reserves of minerals, oil, and natural gas.

1.1 COASTAL ECONOMIC ZONES AND STRATEGIC RESOURCES

Exclusive Economic Zones (EEZs) extend up to 200 nautical miles from the coastlines, granting countries sovereign rights for the exploration, exploitation, conservation, and management of natural resources within this zone. These EEZs are rich in marine biodiversity and significant mineral resources, including polymetallic nodules valuable for their manganese, nickel, cobalt, and copper content. Additionally, many EEZs include substantial offshore oil and natural gas reserves, crucial for energy security.

Legal Frameworks and Enforcement within EEZs are established by national laws and international agreements, ensuring that countries' rights are protected against unauthorised activities by foreign entities. Enforcement within EEZs is carried out by national navies and coast guards through regular patrols and surveillance missions, supported by advanced radar and satellite systems that monitor and deter illegal activities such as unauthorised fishing, smuggling, and incursions by foreign vessels. Sustainable management of EEZs also involves the regulation of fishing practices to maintain fish stocks and marine biodiversity, supported by policies implemented by relevant governmental bodies.

1.2 COASTAL PROTECTION AND SECURITY MEASURES

Multi-layered Protection Strategies involve integrating military, technological, environmental, and community-based approaches. Navies and coast guards are at the forefront of maritime security, conducting regular patrols and surveillance missions to deter illegal activities such as smuggling, piracy, and unauthorised intrusions. Advanced coastal radar networks, satellite surveillance, Maritime domain awareness, and automated identification systems provide comprehensive monitoring of maritime activities, ensuring real-time data for quick response to potential threats. Major naval bases and coast guard stations are strategically located along coasts, enhancing countries' defensive capabilities.

Environmental conservation efforts are another critical aspect of coastal security. Conservation efforts are directed towards preserving fragile ecosystems like mangroves, coral reefs, and estuaries, which act as natural barriers against coastal erosion and storm surges. Sustainable fishing practices and stringent regulations help maintain marine biodiversity and prevent overexploitation of resources. Coastal communities are actively involved in these conservation efforts, receiving training and support to adopt sustainable livelihoods that do not harm the environment.

1.3 INFRASTRUCTURE DEVELOPMENT AND INTEGRATED COASTAL ZONE MANAGEMENT

Modernisation of ports and coastal infrastructure plays a vital role in enhancing economic security and resilience against natural disasters. Integrated Coastal Zone Management (ICZM) plans are implemented to balance development with environmental sustainability, ensuring that coastlines can support both economic growth and ecological health.

1.4 HYDROGRAPHIC SURVEYS AND NAUTICAL CHARTING

Hydrographic surveys and nautical charting are periodically conducted by national hydrographic offices under their respective authorities. These surveys are essential for updating nautical charts, ensuring safe navigation, and supporting various maritime activities. The primary purposes include identifying underwater hazards, determining water depths, and monitoring coastal and marine environments to aid in conservation efforts and pollution control. The survey process involves meticulous planning based on maritime stakeholder requirements, environmental changes, and

DRDO MONOGRAPHS/SPECIAL PUBLICATIONS SERIES

About the Monograph

This guide comprehensively explores workflows for modern torpedo design, bridging theoretical principles with practical application. It offers a structured approach integrating engineering practices with technical data, making it highly useful for professionals, researchers and students.

Key topics include hydrodynamic configuration, sensor design, power requirements, stability, and control mechanisms. The book covers critical aspects such as shell design, material selection, onboard computing, monitoring, safety measures, and considerations for both exercise and combat torpedoes. Deployment strategies for aerial launches from helicopters and fixed-wing aircraft are discussed, emphasizing safety and compatibility certification.

The guide also examines launchers, fire control computers, and rigorous testing protocols to ensure reliability and operational readiness. It reflects the development cycle, from conceptual design to validation, adhering to a systematic engineering process.

Designed with a systems engineering perspective, it offers cross-disciplinary insights, building foundational expertise for designing and developing underwater weapon systems. It serves students, engineers, defence personnel, researchers, and scientists, equipping readers to contribute meaningfully to underwater weaponry.

About the Authors

Dr Rallabhandi Venkata Surya Subrahmanyam, retired Scientist 'G' from Naval Science and Technological Laboratory (NSTL), has nearly four decades of expertise in torpedo systems and underwater technologies. A Mechanical Engineering graduate from Sri Venkateswara University, with Masters from IIT Kanpur and a PhD from Andhra University, he established key facilities like the Cavitation Tunnel, CNC Manufacturing Centre, and Weapon Integration Centre. He spearheaded the critical

technologies project and, as Head of the Mechanical Engineering Directorate, led projects on torpedoes, decoys, weapon fire control systems for submarines, and aerial delivery systems, advancing NSTL's defence innovations.

Dr Y Sreenivas Rao, retired Distinguished Scientist and former Director General (Naval Systems & Materials), has extensive experience in missile and product development. A Mechanical Engineering graduate from JNTU, Hyderabad, with a PhD from Osmania University, he began his career at BHEL in gas turbine manufacturing. Joining DRDO in 2000, he worked on Prithvi warheads, contributed to missile defence, and led Mission Shakti as Project Director for the Exo Interceptor Missile.

As NSTL Director and later Director General (NS&M), he advanced underwater weapons and oversaw six laboratories. 978-93-94166-87-5

Price: ₹2500 US \$50 UK £40

Defence Scientific Information & Documentation Centre
Defence Research & Development Organisation
Ministry of Defence, Metcalfe House, Delhi - 110 054