

AERODYNAMIC PREDICTIVE METHODS AND THEIR VALIDATION IN HYPERSONIC FLOWS

Defence Scientific Information & Documentation Centre Defence Research & Development Organisation Ministry of Defence, India

AERODYNAMIC PREDICTIVE METHODS AND THEIR VALIDATION IN HYPERSONIC FLOWS

AK SREEKANTH

AERODYNAMIC PREDICTIVE METHODS AND THEIR VALIDATION IN HYPERSONIC FLOWS

AK SREEKANTH

Defence Research & Development Organisation Ministry of Defence New Delhi - 110 011 2003 DRDO MONOGRAPH SERIES

AERODYNAMIC PREDICTIVE METHODS AND THEIR VALIDATION IN HYPERSONIC FLOWS

AK SREEKANTH

Series Editors

Editor-in-Chief Dr Mohinder Singh

Coordinator Ashok Kumar

Asst. Editor

Editors Dr JP Singh, A Saravanan

Cover Design A Saravanan

Editorial Asst. AK Sen, Kumar Amar Nath

Ramesh Chander **Production**

Printing JV Ramakrishna, SK Tyagi Marketing RK Dua, Rajpal Singh

Cataloguing in Publication

SREEKANTH, A.K.

Aerodynamic predictive methods and their validation in hypersonic flows.

DRDO monograph series. Includes index and bibliography. ISBN 81-86514-11-2 1. Aerodynamics 2. Hypersonic flows I. Title (Series) 629.132.306.072

© 2003, Defence Scientific Information & Documentation Centre (DESIDOC), Defence R&D Organisation, Delhi-110 054.

All rights reserved. Except as permitted under the Indian Copyright Act 1957, no part of this publication may be reproduced, distributed or transmitted, stored in a database or a retrieval system, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

The views expressed in the book are those of the author only. The editors or publisher do not assume responsibility for the statements/opinions expressed by the author.

Printed and published by Director, DESIDOC, Metcalfe House, Delhi-110 054.

CONTENTS

Preface		xi
Acknowledg	rement	xiii
PART - I	AERODYNAMIC PREDICTIVE METHODS IN HYPERSONIC FLOWS	1
CHAPTER	1	
AERODYN FLOWS	AMIC PREDICTIVE METHODS IN HYPERSONIC	3
CHAPTER	2	
METHOD	s	5
2.1	Introduction	5
2.2	Newtonian Theory	6
2.3	Modified Newtonian Theory	7
2.4	Embedded Newtonian Flow	8
2.5	Newtonian & Prandtl-Meyer Mode1	10
2.6	Tangent Wedge & Tangent Cones	13
2.7	Tangent Wedge, Tangent Cone & Delta Wing Empirical Method	14
2.8	OSU Blunt Body Method	17
2.9	Hankey Flat Surface Empirical Method	17
2.10	Dahlem-Buck Empirical Method	17
2.11	Blast Wave Pressure Increments	18
2.12	Shock Expansion Theory	18
2.12.1	First Order Theory	18
2.12.2	Second Order Shock Expansion Theory (SOSET)	19
2.13	Blunt Bodies of Revolution at Small Angles of Attack	21
2.14	Van Dyke Unified Theory	24
2.15	2-D Airfoil Theory in Hypersonic Flows	25

High Mach Number Base Pressure

References

30

31

2.16

AERODYNAMIC CHARACTERISTICS OF VEHICLE COMPONENTS

сомро	NENTS	33
3.1	Introduction	33
3.2	Body-Alone Aerodynamics	34
3.2.1	Forces & Moments on the Body	34
3.2.2	Axial Force	37
3.2.3	C_{A_f} – Skin Friction Coefficient	37
3.2.4	C_{A_b} – Base Pressure Coefficient	39
3.2.5	Determination of C_{AN} , the Axial Pressure Coefficient of Nose Portion of the Body	40
3.2.5.1	Pointed Cone	40
3.2.5.2	Pointed Ogive	41
3.2.5.3	Hemispherical Nose	41
3.2.6	Normal Force	41
3.2.6.1	Pointed Cone	41
3.2.6.2	Pointed Ogive	42
3.2.6.3	Hemispherical Nose	42
3.2.6.4	Cylinder	42
3.3	Allen & Perkins Viscous Cross Flow Theory	43
3.4	Moments	43
3.4.1	Pointed Cone	44
3.4.2	Pointed Ogive	44
3.4.3	Hemisphere	45
3.4.4	Circular Cylinder	45
3.5	Wing Alone Aerodynamics	45
3.5.1	Hexagonal Shape Wing Section	45
3.5.1.1	Axial Force	47
3.5.1.2	Normal Force	50
3.5.1.3	Axial Component of the Rudder	51
3.5.1.4	Normal Component (Wing or Rudder)	51
3.5.1.5	Pitching Moment	52
3.5.2	Other Wing Sections	52
3.5.2.1	Airfoil Characteristics by 2-Dimensional Hypersonic Airfoil Theory	52
	References	59

CHAPTER 4

SKIN	FRICTION FORCE CALCULATION	61
4.1	Introduction	61
4.2	Sommer & Short Method	62
4.3	Van Driest-II Method	63
4.4	Spalding & Chi Method	64
4.5	Empirical Equations	65
	References	66

CHAPTER 5

AERODY	NAMIC HEATING AT HYPERSONIC SPEEDS	67
5.1	Introduction	67
5.2	Heating Analysis	67
5.3	Stagnation Point Heat Transfer	69
5.3.1	Spherical Nose	69
5.3.2	Cylinder Normal to the Stream	72
5.3.3	Swept Wing Stagnation Line Heat Transfer	72
5.3.4	Perfect Gas	73
5.3.5	Real Gas	74
5.3.6	Heat Transfer Coefficient h	75
5.3.7	Heat Transfer on Flat Surfaces and Fuselage Panels	77
5.4	Heat Transfer Analysis by the Method of Quinn & Gong	80
5.4.1	Stagnation Point Heating Rate	80
5.4.2	Convective Heating Equation for Small or Zero Pressure Gradient Surfaces	83
5.4.3	Boundary Layer Transition	86
5.5	High Speed Convective Heat Transfer Methodology of Tauber	87
5.5.1	Stagnation Point Heat Transfer	88
5.5.2	Swept Infinite Cylinder	88
5.5.3	Cone & Flat Plate Heating Rate	89
5.5.3.1	Laminar Boundary Layer	89
5.6	Empirical Equation for Convective Heat Transfer	90
5.6.1	Stagnation Point	91
5.6.2	Flat Plate in Laminar Flow	91
5.6.3	Flat Plate in Turbulent Flow	91
	References	92

PART - II	VALIDATION OF PREDICTION METHODS	93
CHAPTER	6	
VALIDAT	ION OF PREDICTION METHODS	95
6.1	North American X-15 Research Aircraft	110
6.1.1	Walker & Wolowicz's Work	115
6.1.2	Lift Characteristics	115
6.1.3	Wing	116
6.1.4	Horizontal Tail	118
6.1.5	Fuselage	118
6.1.6	Pitching-Moment Characteristics	119
6.1.7	Wing & Horizontal Tail	119
6.1.8	Fuselage	128
6.1.9	Maughmer et al. Analysis of X-15	128
6.2	Hypersonic Research Airplane	139
6.3	Space Shuttle Orbiter	156
6.4	Conclusions	158
	References	169

PART - III AERODYNAMICS OF RAREFIED GASES 173

CHAPTER 7

AERODYNAMICS	OF	RAREFIED GASES	175

7.1	Introduction	175
7.2	Free Molecule Flow Analysis	177
7.2.1	Surface Interaction Parameters	177
7.2.2	Forces on an Surface Element in Free Molecule Flow	179
7.3	Aerodynamic Forces for Typical Bodies	187
7.3.1	Flat Plate	187
7.3.2	Infinite Right Circular Cylinder at an Angle of Attack, $\boldsymbol{\alpha}$	191
7.3.3	Sphere	194
7.3.4	Cone Frustrum	195
7.3.5	Spherical Segment	198
7.4	Aerodynamic Forces in Slip & Transitional Flows	200
7.5	Energy Transfer in Free Molecule Flow	203
7.5.1	Equilibrium Temperatures for Simple Shapes	207

7.5.2	Heat Transfer for Typical Bodies in Free Molecule Flow	208
7.5.3	Heat Transfer in Slip & Transitional Flow Regimes	212
	References	213
Appendix		215
Index		225

PREFACE

This monograph presents a summary of engineering methods most commonly employed for preliminary aerodynamic analysis of bodies travelling at hypersonic speeds. To the extent possible, an attempt has been made to make the present work self-sufficient. However, references are cited if one is interested in the source or more details.

The work is in three parts. Part 1 deals with Predictive Methodology, Part 2 covers Validation of Prediction Methods and Part 3 the Aerodynamics of Rarefied Gases.

Secunderabad Date: June 2003 **AK Sreekanth**

ACKNOWLEDGEMENT

The writing of this monograph has been made possible by the financial assistance received from the Defence Scientific Information and Documentation Centre (DESIDOC), Ministry of Defence, Government of India, New Delhi.

The author would like to place on record his sincere thanks and appreciation to the following persons.

- 1. Prof. M. Maughmer, Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA. U.S.A. for permission to freely use the figures and material from the thesis of his student L.P.Ozoroski and from the NASP Contractor Report 1104.
- 2. Dr. J.Agrell, Head of Experimental Aerodynamics Department, FFA, Sweden, for permission to include material in the monograph from the FFA Technical Note AU-1661.
- 3. Mr. Dan Pappas, Chief Librarian, NASA Ames Research Center, Moffett Field, CA. for allowing me to use the Ames Library freely.

PART - I

AERODYNAMIC PREDICTIVE METHODS IN HYPERSONIC FLOWS

CHAPTER 1

AERODYNAMIC PREDICTIVE METHODS IN HYPERSONIC FLOWS

1.1 INTRODUCTION

The conceptual design of an efficient hypersonic cruise vehicle or a missile requires a detailed knowledge of how various geometrical configuration parameters affect the aerodynamic performance of such a vehicle. Besides, it is desirable to have the ability to compare one configuration's performance with another in a relatively short amount of time. During the preliminary design phase involved in arriving at feasible configurations for a specified mission, simple engineering-type empirical and semi-empirical methods are invariably employed. The expensive and timeconsuming wind tunnel tests and sophisticated computational techniques are reserved for possible designs evolved from the preliminary analysis.

A variety of engineering methods applicable to flows at hypersonic Mach numbers have been reported over the years in open literature. Each of these methods works well on very specific types of components. Therefore, it is necessary to choose a combination of these methods to analyse the complete vehicle made up of various components, such as body, lifting, and control surfaces.

The present work is a compilation of some of the wellknown prediction methods, their applicability and limitations. Examples of the application of a few of these methods to calculate aerodynamic parameters of some specific components of vehicle configurations have been made and the results presented. Some published work on the aerodynamic characteristics of a few of hypersonic configurations, their predictions and comparison with

4 Aerodynamic Predictive Methods In Hypersonic Flows

experimental data are discussed in Part II(Chapter 6) of this monograph, to illustrate the applicability and validity of the approximate methodology.

DRDO MONOGRAPH SERIES

About the Book

This monograph presents a summary of engineering methods most commonly employed for preliminary aerodynamic analysis of bodies travelling at hypersonic speeds. The work is divided into three parts: Part I deals with Predictive Methodology, Part II covers Validation of Predictive Methods and Part III the Aerodynamics of Rarefied Gases.

About the Author

Dr AK Sreekanth has multiple qualifications to his credit starting with B.E. (Mech) from College of Engineering, Bangalore; D.I.I.Sc (Aero), I.I.Sc, Bangalore, followed with M.A.Sc and Ph.D from University of Toronto, Canada.

He started working as Lecturer at University of Toronto, as Staff Scientist at Boeing Company, Seattle, NRC-NASA Senior Post Doctoral Research Fellow, NASA Ames Research Center, California, Professor and Head of Aerodynamics Group, Indian Institute of Technology, Madras, India, Member of International Rarefied Gas Dynamics Advisory Committee for many years and CSIR Emeritus Professor, I.I.Sc, Bangalore.

His area of specialization is Experimental and Numerical Gas and Fluid dynamics with special reference to Rarefied and Hypersonic Flows - High Speed Wind Tunnel and Shock Tube testing.

Defence Scientific Information & Documentation Centre Defence Research & Development Organisation Ministry of Defence Metcalfe House, Delhi - 110 054 India

Price: Rs. 400 US \$ 25 UK £ 15